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Abstract

Analytic expressions for the nuclear magnetic spin relaxation rate constant for magnetization spin-locked in the rotating ref-
erence frame under an applied radiofrequency field, R1q, are obtained for two-site chemical exchange. The theoretical approach
is motivated by Laguerre�s method and obtains R1q as the root of a (p1,q1) Padé approximant. The general formula for R1q

obtained by this approach is substantially simpler than existing expressions and is equally or slightly more accurate, in most
cases. In addition, particular solutions for the R1q rate constant are presented for two special cases: equal populations of the
two exchanging sites, or placement of the radiofrequency carrier at the average resonance frequency of the two sites. The solu-
tions are exact when the R1 and R2 relaxation rate constants are identical, and nearly exact under realistic experimental
conditions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

NMR spin relaxation in the rotating frame is a pow-
erful method for characterizing dynamic processes in
chemical and biological systems [1]. Recently, R1q relax-
ation dispersion experiments have been extended to de-
scribe systems using weak radiofrequency (rf) fields and
slow chemical exchange kinetics [2–4]. As noted by Trott
and Palmer [5], the R1q relaxation dispersion technique
becomes more sensitive, compared to other techniques
such as Carr–Purcell–Meiboom–Gill relaxation disper-
sion [6,7], to parameters characterizing chemical ex-
change processes at the extremes of slow exchange or
weak rf fields. Characterizing such processes requires
accurate analytical expressions for the R1q relaxation
rate constant that are not limited to the fast-exchange
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regime and do not assume special experimental condi-
tions, such as on-resonance irradiation [8,9].

Analytic expressions for the R1q relaxation rate
constant for nuclear spins subject to N-site chemical
exchange when the site populations are skewed, i.e.,
one site is much more highly populated than the others,
have been obtained by analyzing the 3N · 3N Bloch–
McConnell equations [5,10]. For the simple case of
two-site (N = 2) exchange, a series of increasingly accu-
rate expressions for R1q have been obtained using the
average magnetization approach, which treats the evolu-
tion of the average density operator in the stochastic
Liouville equation (SLE); however, increased accuracy
is been obtained at the cost of substantial algebraic com-
plexity [1,11,12].

In this paper, we return to the description ofR1q relax-
ation for chemical exchange of isolated nuclear spins be-
tween two sites with distinct magnetic environments,
using the the Bloch–McConnell equations [10]. The R1q

relaxation rate is the largest (least negative) real root of
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the sixth-order characteristic polynomial derived from
the 6 · 6 Bloch–McConnell evolution matrix. In general,
the roots of a sixth-order polynomial cannot be expressed
with a finite number of elementary arithmetic operations
or root extractions [13]. However, this statement does not
preclude solvable special cases, or approximate expres-
sions of arbitrary accuracy. Motivated by Laguerre�s
method for polynomial root finding, we obtain a new ana-
lytical expression for the R1q relaxation rate constant.
This general formula is substantially simpler and, in most
cases, is equally or more accurate than expressions ob-
tained using the average magnetization approach [1,11].
We also present a new expression for R1q that is valid
for two special cases: equal site populations or placement
of the rf carrier at the average resonance position. This
expression is exact when the R1 and R2 relaxation rate
constants are identical, and nearly exact under realistic
experimental conditions, even if R1„R2. The increased
accuracy and algebraic simplicity of the new expressions
for the R1q relaxation rate constant are important partic-
ularly for interpretation of experimental R1q relaxation
dispersion data in chemical and biological systems,
including proteins and other biomacromolecules.
2. Theory

2.1. Bloch–McConnell equations

For two-site exchange, under an applied rf field, the
Bloch–McConnell equations describe evolution of the
site magnetizations

d

dt

MaðtÞ
MbðtÞ

� �
¼

La 0

0 Lb

� �
þ K� 1s

� �
MaðtÞ
MbðtÞ

� �
; ð1Þ

in which Mj (t) = [Mxj (t), Myj (t),Mzj (t)]
T is understood

to represent the deviation of the magnetization associat-
ed with site j = (a,b) away from the thermal equilibrium
value,

Lj ¼
�R2j �dj 0

dj �R2j �x1

0 x1 �R1j

2
64

3
75; ð2Þ

K ¼
�kab kba
kab �kba

� �
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and 1s is the 3 · 3 identity matrix. The resonance offset
for site j, dj, is defined as

dj ¼ Xj � xrf ; ð4Þ
in which Xj is the Larmor frequency of spins in site j, and
xrf is the frequency of the applied field;R1j andR2j are the
site-specific spin–lattice and spin–spin relaxation rate
constants, respectively, which arise from mechanisms
other than chemical exchange, including dipole–dipole
and chemical shift anisotropy mechanisms; x1 is the
amplitude of the applied rf field; The equilibrium site pop-
ulations are pa = kba/(kab + kba), pb = kab/(kab + kba),
where kij is the microscopic reaction rate constant for ex-
change from site i to site j, and pa P pb is assumed. In the
remainder of this paper, the expression in curly braces in
Eq. (1) is called the Bloch–McConnell evolution matrix.

2.2. Previously derived expressions

An expression for the R1q relaxation rate constant
applicable outside of the limit of fast exchange was ini-
tially derived by Trott and Palmer, by linearizing the
characteristic polynomial of the Bloch–McConnell
equations [10]. This expression is given by

R1q ¼ �R1cos
2hþ �R2sin

2hþ sin2hpapbd
2k

x2
ax

2
b=x2

e þ k2
ð5Þ

and is accurate when the populations of the two sites are
highly skewed (pa � pb). In Eq. (5),

d ¼ da � db; ð6Þ
�X ¼ paX a þ pbX b;

DX ¼ �X� xrf ;

x2
j ¼ d2j þ x2

1;

x2
e ¼ DX2 þ x2

1;

h ¼ arctanðx1=DXÞ;
k ¼ kab þ kba.

Expressions that are more accurate when the populations
are less skewedwere derived by Trott, Abergel, and Palm-
er by considering the long-time evolution of the average
density operator in either the time or Laplace domains
[1,11,12]. This approach reduces the 6 · 6 Bloch–McCon-
nell matrix for the site magnetizations to a 3 · 3 evolution
matrix for the average magnetization. The largest real
eigenvalue of this matrix can be obtained exactly as the
root of the cubic characteristic polynomial and is a highly
accurate, but very complex, approximation to R1q. More
tractable approximate expressions are obtained by linear-
izing the characteristic polynomial, or by expansion of the
average resolvent in the Laplace domain. The most accu-
rate of these expressions is given by:

R1q ¼ �R1cos
2hþ �R2sin

2h

þ 1

c

� �
sin2ĥpapbd

2k

x̂2
ax̂

2
b=x̂

2
e þ k2 � 2sin2ĥpapbd

2 þ ð1� cÞx2
1

;

ð7Þ
in which

c ¼ 1þ papbd
2ðr2 � k2 þ x2

1Þ=ðr2 þ k2 þ x2
1Þ

2
; ð8Þ

r ¼ pbda þ padb;

x̂2
j ¼ d2j þ cx2

1;

x̂2
e ¼ DX2 þ cx2

1;

ĥ ¼ arctanð ffiffiffi
c

p
x1=DXÞ.
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2.3. Characteristic polynomial

As discussed by Trott and Palmer, the R1q relaxation
rate constant is determined by the largest (least-nega-
tive) real eigenvalue of the Bloch–McConnell evolution
matrix [10]. Equivalently, R1q is determined by the larg-
est (least-negative) real root of the associated character-
istic polynomial [10]. For algebraic simplicity in the
following, and consistent with Eqs. (5) and (7), relaxa-
tion due to R1 and R2 processes is separated from the
contribution due to chemical exchange broadening,
Cex, by defining:

R1q ¼ �R1cos
2hþ �R2sin

2hþ Cex; ð9Þ

To obtain solutions for Cex, we consider the characteris-
tic polynomial of the Bloch–McConnell evolution ma-
trix in the absence of relaxation due to R1 and R2

processes:

P ðxÞ ¼ x6 þ a5x5 þ a4x4 þ a3x3 þ a2x2 þ a1xþ a0; ð10Þ

in which the coefficients of the polynomial are given by

a5 ¼ 3k; ð11Þ
a4 ¼ x2

a þ x2
b þ 3k2;

a3 ¼ k½k2 þ ð2pa þ 1Þx2
a þ ð2pb þ 1Þx2

b�;
a2 ¼ k2ðx2

e þ 2pax
2
a þ 2pbx

2
bÞ þ x2

ax
2
b;

a1 ¼ kðk2x2
e þ x2

ax
2
bÞ;

a0 ¼ d2k2papbx
2
1.

Consequently, the exchange contribution to the R1q

relaxation rate constant is obtained as:

Cex ¼ �rs; where rs ¼ maxfx 2 RkP ðxÞ ¼ 0g. ð12Þ

As elaborated by Abergel and Palmer, such a separa-
tion of R1 and R2 processes from the effects of chemical
exchange is valid under realistic experimental condi-
tions for which the correlation time for overall rota-
tional diffusion of the molecule, sc, satisfies sck � 1,
and the site-specific relaxation rate constants satisfy
|R1b � R1a| � k, |R2b � R2a| � k, and �R2 � �R1 � k
[1,12]. This separation is exact, for any value of k, if
R1a = R1b = R2a = R2b.

2.4. Laguerre approximation

To approximate rs, we apply Laguerre�s method for
polynomial root finding. We compute a single iteration
of the Laguerre approximant [14], evaluated with an ini-
tial guess of zero,

rs ¼ � M

maxfG0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � 1ÞðMH 0 � G2

0Þ
q

g
; ð13Þ

in which M = 6 is the order of the polynomial, and
G0 ¼
P ðxÞ0

P ðxÞ

����
x¼0

¼ a1
a0

; ð14Þ

H 0 ¼
PðxÞ0

P ðxÞ

� �2

� P ðxÞ00

P ðxÞ

�����
x¼0

¼ a1
a0

� �2

� 2a2
a0

. ð15Þ

The choice of the positive sign maximizes the denomina-
tor, and leads to the following formula for rs,

rs ¼ � 6a0
a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25a21 � 60a0a2

p . ð16Þ

To simplify the Laguerre approximant, we linearize the
radical in the denominator. The linearization yields an
upper bound on the value of the radical in the denomi-
nator, and hence a lower bound to the Laguerre approx-
imant. The linearized expression for rs is,

rs ¼ � a0
a1 � a2a0=a1

. ð17Þ

As will be utilized below, the linearized expression for
the real root near zero is independent of the order of
the polynomial, M. Adding contributions from R1 and
R2 processes, and making use of the identity,

pax
2
a þ pbx

2
b ¼ x2

e þ d2papb ð18Þ
leads to the final result:
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2
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x2
ax

2
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ek
2

	 
 .

ð19Þ
This expression approaches the expression for R1q given
in Eq. (5), as the quantity ða2a0=a21Þ ! 0, which occurs
when a0/a1 � k.

The result given in Eq. (19) is one of the principal re-
sults of this paper. Inmost cases, this expression is equally
or more accurate than previously derived expressions,
including Eq. (7). The accuracy of Eq. (19) is illustrated
in Figs. 1 and 2. Equally importantly, the expression for
R1q in Eq. (19) is substantially simplier algebraically, be-
cause it lacks the numerous factors of c found in the aver-
age magnetization expression, Eq. (7).

The linearized Laguerre approximant to a root near
zero, Eq. (17), can also be applied to the cubic polyno-
mial obtained from the average magnetization ap-
proach. The resulting expression for R1q has improved
accuracy, but is substantially more complicated, com-
pared to Eqs. (7) and (19) (not shown), and thus does
not have practical benefits.

The linearized expression, Eq. (17), also can be de-
rived by considering the quadratic truncation of the
sixth-order characteristic polynomial.

P ðxÞ � a2x2 þ a1xþ a0. ð20Þ
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Fig. 2. Offset dependence of the R1q relaxation rate constant. (—)
Exact numerical largest real eigenvalue of the 6 · 6 Bloch–McConnell
equations. (- Æ -) R1q as predicted by the average magnetization
approximation, Eq. (7). (ÆÆÆ) R1q as predicted by the linearized Laguerre
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Fig. 1. Exchange rate dependence of the R1q relaxation rate constant.
(—) Exact numerical largest real eigenvalue of the 6 · 6 Bloch–
McConnell equations. (- Æ -) R1q as predicted by the average magneti-
zation approximation, Eq. (7). (ÆÆÆ) R1q as predicted by the linearized
Laguerre approximant, Eq. (19). Parameters used in the calculations
are: �R1 ¼ 1.5 s�1, �R2 ¼ 11 s�1, d = 2400 s�1, DX = 1500 s�1, and
x1 = 1000 s�1. (A) pa = 0.9; inset shows the region of k (2700,4000),
R1q (28,28.7). (B) pa = 0.6; inset shows the region of k (1200,2800), R1q

(120,135).
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Expressing the roots of the quadratic truncation using
an alternate form of the quadratic equation [14], leads
to,

rs ¼ � 2a0
a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0a2

p . ð21Þ

This expression can be reduced to Eq. (17), by choosing
the positive sign, and linearizing the radical in the
denominator. We have opted, however, to derive the lin-
earized formula using Laguerre approximation, because
it is a more general method and also more accurate, as
shown in Fig. 3.

2.5. Special case solutions

To simplify the characteristic polynomial in Eq. (10),
we perform a linear Tschirnhausen transformation
[13,15], by defining the new variable

x ¼ y � 1
2
k ð22Þ

to eliminate the a5 coefficient. Because the a5 coefficient
is the negative sum of the roots of the polynomial, such
a transformation is equivalent to making the associated
diagonal matrix of eigenvalues traceless. The resulting
reduced polynomial is given by

P ðyÞ ¼ y6 þ b4 y4 þ b3 y3 þ b2 y2 þ b1 y þ b0; ð23Þ
in which

b4 ¼ x2
a þ x2

b � 3
4
k2; ð24Þ

b3 ¼ kDpðx2
a � x2

bÞ;
b2 ¼ 3

16
k4 þ 1

4
k2ðDp2 � 1Þðx2

a þ x2
b � 2x2

cÞ þ x2
ax

2
b;

b1 ¼ �1
4
k3Dpðx2

a � x2
bÞ;

b0 ¼ � 1
64
k2½k4 þ 4k2ðDp2ðx2

a þ x2
b � 2x2

cÞ þ 2x2
cÞ

þ 16ðDp2ðx2
ax

2
b � x4

cÞ þ x4
cÞ�;

and the variables x2
c and Dp have been introduced

x2
c ¼ ðdadb þ x2

1Þ; ð25Þ
Dp ¼ pa � pb.

The reduced polynomial can be solved as a cubic for y2

provided that the coefficients b1 and b3 are zero. Exclud-
ing the trivial cases when k = 0, or Xa = Xb, this condi-
tion is satisfied when the populations of the two sites are
equal, or when the carrier frequency, xrf, is placed at the
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numerical (not population-weighted) average resonance
frequency of the two sites. We refer to these two cases as
the equal populations or average resonance frequency

conditions, respectively:

b1 ¼ b3 ¼ 0 (
Dp ¼ 0 : pa ¼ pb;

ðx2
a � x2

bÞ ¼ 0 : xrf ¼ 1
2
ðXa þ XbÞ.

�

ð26Þ
To ensure that the desired real root is close to zero, we
perform a second Tschirnhausen transformation by
defining a new variable:

y2 ¼ zþ 1
4
k2. ð27Þ

Making this substitution and simplifying the coefficients
leads to the cubic polynomial

P ðzÞ ¼ z3 þ c2z2 þ c1zþ c0; ð28Þ
in which

c2 ¼ x2
a þ x2

b; ð29Þ
c1 ¼ x2

ax
2
b þ k2x2

e ;

c0 ¼ d2k2papbx
2
1.

The three roots of this polynomial can be expressed with
exact analytic formulas [14]. Using Eqs. (22) and (27),
the six roots of Eq. (10) are given by

x ¼ �k=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=4þ z

q
; where P ðzÞ ¼ 0 ð30Þ

under the equal populations or average resonance fre-
quency conditions. The resulting expression for Cex is
given by
Cex ¼ k=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=4þ rc

q
; where

rc ¼ maxfz 2 RkPðzÞ ¼ 0g. ð31Þ

The exact expression for Cex is algebraically complex; to
generate a more compact approximation, we consider
the linearized Laguerre approximant at zero, as in Eq.
(17), substituting the coefficients ck rather than ak:

Cex ¼ k=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=4� c0

c1 � c2c0=c1

r
. ð32Þ

Adding the contribution from R1 and R2 processes and
making explicit substitutions for the coefficients gives

R1q ¼ �R1cos
2hþ �R2sin

2h

þ k
2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sin2hpapbd

2

x2
ax

2
b=x2

e þ k2 � sin2hpapbd
2 k2ðx2

aþx2
bÞ

x2
ax

2
bþx2

e k
2

vuuut
0
BB@

1
CCA.

ð33Þ

This expression is another principal result of this paper.
It has improved performance compared to previous
expressions, including the general approximation, Eq.
(19), under the equal populations or average resonance
frequency conditions. The accuracy of the expression
in Eq. (33) is illustrated in Figs. 4 and 5.
3. Methods

Symbolic calculation of the characteristic polynomial
for the Bloch–McConnell equations, Eqs. (1) and (10),
and the simplification of coefficients in Eq. (24), were
performed with Mathematica (Wolfram Research).
Numerical simulations were performed with Scilab
(Scilab Consortium, INRIA, ENPC). Figures were pre-
pared with Scilab and Grace (http://plasma-gate.weiz-
mann.ac.il/Grace/).
4. Discussion and conclusion

Motivated by Laguerre�s method, we have derived
new expressions for the R1q relaxation rate constant
for nuclear spin magnetization locked by an rf field
along the direction of the effective magnetic field in the
rotating reference frame. Laguerre�s method is a power-
ful root finding algorithm, which is guaranteed to itera-
tively converge to a complex root [14]. Indeed, single
iterations of Laguerre�s method can be used to obtain
approximations to R1q or even R2q, provided initial
guesses are taken respectively at zero, or ±ixa. The
resulting expression for R2q, however, is complicated
and accurate only for skewed populations, relatively
higher field strengths, and higher exchange rates (not
shown).

http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/
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In the present application, R1q was obtained by first
computing the Laguerre approximant to the chemical
exchange broadening contribution, Cex, at zero, Eq.
(16). The expression is simplified by linearizing the rad-
ical in the Laguerre approximant, Eq. (17). The linear-
ized expression also can be obtained by considering
the quadratic truncation of the characteristic polynomi-
al. Adding contributions from R1 and R2 processes leads
to the new expression for R1q, Eq. (19). This expression
has lower relative algebraic complexity compared to the
average magnetization approximation, Eq. (7), while
being equally or slightly more accurate in most cases.

The accuracy of the Laguerre approximant, Eq. (16),
and linearized expression, Eq. (17), depends in a compli-
cated manner on the resonance offsets, site populations,
exchange rate constant, and applied field strength.
Numerical simulations indicate that both expressions
are accurate under most combinations of parameters if
pa P 0.7; for pa < 0.7, the accuracy is reduced for slow
exchange and/or weak rf fields. In addition, the
Laguerre approximant performs better when x1 P k;
however, the linearized expression is more accurate for
x1 < k. In the latter circumstance, the Laguerre approx-
imant tends to overestimate the R1q relaxation rate con-
stant, or fails to converge to a real root.

The linearized expression, Eq. (17), is the root of a
(p1,q1) Padé approximant to the characteristic polyno-
mial [16,17]. Specifically, the linearized expression is
the root of the ratio of monomials, p1 and q1, that
approximates the characteristic polynomial at zero. In
a sense, the (p1,q1) Padé approximant provides im-
proved modeling of the characteristic polynomial at
zero, extending the initial results of Trott and Palmer
[10]. Higher order (p1,qm) Padé approximants give im-
proved results under some circumstances, at the cost
of increased complexity.

Finally, an expression for Cex, the chemical exchange
broadening contribution to the R1q relaxation rate con-
stant, Eq. (31), has been obtained for two special cases:
equal site populations or placement of the rf carrier fre-
quency at the average resonance position. The resulting
expression for R1q is exact when the R1 and R2 relaxa-
tion rate constants are identical, and nearly exact when
�R2 � �R1 � k. We also have applied the linearized expres-
sion, Eq. (17), to Eq. (31), finding a simple expression
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with high accuracy, for these special cases, Eq. (33). The
special case of equal site populations arises for systems
exhibiting symmetric exchange, such as 180� rotations
of aromatic rings in proteins [18–20]. Furthermore, for
symmetric exchange, the average resonance frequency
can be identified by direct inspection of the NMR
spectrum.

The number of applications of R1q relaxation disper-
sion experiments for characterizing slow timescale
dynamics in proteins and other biomacromolecules has
increased dramatically over the past few years [2–4].
The highly accurate, algebraically simple, expressions
presented in this paper will facilitate data analysis of
R1q relaxation dispersion experiments, for systems in
slow-to-intermediate exchange, at lower applied rf field
strengths, and with site populations that are not highly
skewed.
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